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Abstract-An efficient finite element method is presented for

the full wave analysis of dielectric waveguides. This method
has four major features: 1) the ability to treat a wide range

of dielectric waveguide problems with arbitrarily shaped cross
section, inhomogeneity, transverse-anisotropy, and significant 10SS
(or gain); 2) total elimination of spurious solutions; 3) direct
solution for the (complex) propagation constant at a specified
frequency; and 4) the use of only two components of the magnetic

field, thus maximizing the numerical efficiency of solution. The

resultant matrix eigenvahie problem is of canonical form and

is solved with an efficient method, specially developed for this

purpose, taking full advantage of the sparsity of the matrices.
Numerical results are shown for a variety of microwave and op-

tical waveguides including anisotropy and losses. These examples
also include closed and open-bounded structures. The computa-
tional results agree very well with analytical and previously pub-
lished results.

I. INTRODUCTION

D IELECTRIC waveguides are fundamental components of

optoelectronic and microwave devices and, as such, a

full, accurate description of how electromagnetic waves propa-

gate in these structures is essential. The advance of material

science and fabrication technology is continuously introducing

more complicated waveguide structures. Furthermore, many

materials used in dielectric waveguides are anisotropic (such

as LiNb03, LiTa03, and many organic materials), further com-

plicating the theoretical analysis of the devices. Additionally,

quite often, significant losses need to be taken into account,

for instance, in lossy buffer layers or metal claddings of

optical waveguides (as metal is highly absorbing at optical

frequencies). On the other hand, fabrication costs are still

high, and measuring techniques are difficult, expensive, and

time consuming. There is, therefore, a great demand for more

accurate and flexible computer modeling techniques which can

be used for analysis and design of a wide range of waveguiding

structures.

A single scalar formulation is inadequate for the inher-

ently hybrid mode situation of anisotropic or genuinely two-

dimensional inhomogeneous waveguide problems. To evaluate

rigorously the propagation characteristics of inhomogeneous

anisotropic waveguides, a vectorial wave analysis is necessary,
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with at least two field components. According to the way

the problem is formulated (or to the type of eigenvalue), the

formulations may be classified into two types. One type can be

called frequency formulation (or simply u-formulation), where

the eigenvalue is an explicit known function of w; the otlher

can be called a propagation constant formulation (or simlply

T-formulation), where the eigenvalue is an explicit known

function of T. One important drawback of an u-formulation

is that, for a given waveguide, it gives the frequency of each

mode corresponding to a selected value of the propagation

constant, while in practice the problem is usually the inverse,

that is, one is interested in finding the propagation constant

(possibly complex) at a specified frequency. Consequently,

iterations are usually needed to solve a practical problem when

using this type of formulation. In contrast, a y-formulation

solves directly for the propagation constant at a given fre-

quency. Additionally, due to the impracticality of a proper

guess for a complex propagation constant, only -y-formulations

are applicable to lossy waveguide problems (or, for the saline

reason, to the analysis of complex modes in Iossless guides).

The finite element method is one of the most versalile

methods to find accurate and efficient numerical solutions to

a wide range of electromagnetic field problems. However,

perhaps the most serious difficulty in applying a vectorial,

nodal-based finite element method to waveguide problems (or

similar problems requiring a vectorial representation) is the

appearance of spurious solutions [1], [2]. Although the occur-

rence of spurious solutions has been known for some time,

and research on this topic has been extensive in recent years,

the suppression of such undesirable nonphysical solutions is

still a subject of great interest.

An earlier similar formulation based on the transverse

components of the magnetic fields was used by Williams and

Cambrell [3] to analyze surface waves in (open) isotropic
dielectric waveguides. But as the equations contain terms

proportional to derivatives of the permittivity, it is not really

adequate for finite element solutions of waveguides of arbitrary

permittivity profiles, including abrupt dielectric interfaces [4].

Several methods have been suggested over the last decade

to cure the spurious problem. Apart from the penalty method

[5] which, although not eliminating the spurious solutions,

allows us to shift them away from the region of interest in the

spectrum, other procedures attempt to remove them altogether.

For example, Hayata et al. [6] suggested an approach in

terms of only the transverse magnetic field components for
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anisotropic lossless waveguide problems. Using the divergence

condition, they managed to reduce the number of components

and eliminate spurious solutions, but at the cost of losing the

sparsity of the matrices (rendering the method useless but for

the smallest problems). The same problem is clear in their

extensions of their method to diagonal anisotropic and 10SSY

waveguide problems [7]. In their examples, a simple mesh of

153 nodes requires 27 MB memory and about 40 seconds to

obtain one point in the dispersion curve using an Hitachi S-

810/10 supercomputer.

Chew and Nasir [8] proposed a four component variational

T-formulation in terms of the transverse components of both

electric and magnetic fields for transverse anisotropic dielectric

waveguide problems. This formulation can be reduced to

one in terms of only (Hz, lJy ) or (13~, 13Y), but only after

assuming that both transverse fields (electric and magnetic)

can be described in terms of the same set of basis functions,

implicitly forcing continuity on the transverse components

of both electric and magnetic fields. This, of course, will

not be correct in the case of abrupt dielectric interfaces.

Additionally, the resultant formulation is highly sensitive to

the type of element used. For instance, square elements cause

the formulation to collapse.

A y-formulation in terms of all six components of the

electric and magnetic< fields was proposed by Svedin [9].

Enforcing all tangential and normal interface and boundary

conditions, and implicitly forcing the zero divergence con-

dition on both electric and magnetic fields, this formulation

succeeds in eliminating spurious solutions. Although it can

treat the most general anisotropic materials with full permittiv-

ity and permeability tensors, it is extremely inefficient, needing

all six components of the fields (the order of the matrices is

then six times the number of nodes!).

Formulations based on a combination of vector and scalar

potentials have also been proposed to eliminate spurious

modes [10], [11]. These are w-formulations in terms of four

variables.

A completely different way of avoiding spurious solutions

is the use of edge elements and their generalization, tangen-

tial elements [12], [13]. In this approach, the interpolation

functions themselves are defined as vectors, and the required

continuity conditions of the field components across element

boundaries are automatically satisfied. This provides a neat

and elegant way of solving problems involving vector fields,

although its most clear applications are still in the solution of

authentically three-dimensional problems. Applications have

been made of this method to two-dimesional (waveguide)

problems [14], [15] although this results in a rather awkward

treatment of the three different components of the field vector

where two components are described in terms of edge elements

and the third using nodal based elements. Furthermore, in the

method of Koshiba et al. [15], the sparsity of the matrices is

lost. The method in [14] is a ~-formulation which, according

to its authors, leads to real eigenvalues. Since the spectrum

of solutions of (lossless and lossy) waveguides containing

inhomogeneous dielectrics is, in general, complex, this for-

mulation is incomplete. A related approach to edge elements

uses covariant-projection elements [16]. This has been applied

to solve waveguides using an w-formulation and requiring

mixed order trial functions. No standard spurious solutions

appear but, in common with edge element methods, a cluster

of zero-eigenvalue is found.

Most of the existing finite element formulations for the

dielectric waveguide problem have been restricted to the

lossless case. In particular, all w-formulations are only of

practical interest in such a case. Of the recently proposed

formulations which can eliminate spurious solutions, only

Hayata et al. [7] show explicit applications to lossy waveguide

problems. However, as mentioned before, their formulation

leads to dense matrices, which is a real extravagance in the

use of computer resources.

In this paper, we present in detail an efficient, vectorial,

variational finite element approach for the analysis of in-
hornogeneous, anisotropic, and lossy dielectric waveguides

[17] –[19]. It can treat a wide range of dielectric waveguide

problems with arbitrary cross section and inhomogeneous,

transversely anisotropic and complex permittivity tensor. This

formulation gives solutions directly for the (complex) propa-

gation constant at a specified frequency and totally eliminates

spurious solutions. Numerically efficiency is maximized since

it only uses the two transverse components of the magnetic

field. The resultant matrix eigenvalue problem is of canoni-

cal form and involves sparse, nonsymmetric (or in general,

complex non-Hermitian) matrices. An efficient solver [20] has

been specially developed for this problem, and allows us to

treat large problems on relatively small computers. Examples

are given of several types of waveguides in microwaves

and optics, including open and closed boundaries, anisotropy,

and loss.

II. VARIATIONAL APPROACH

Consider a dielectric waveguide, uniform in the z-direction

and of arbitrary cross section ~ in the x – y plane as depicted

in Fig. 1. The region ~ consists of linear dielectric materials

and electric conductors. We assume that C, the boundary

of ~, may be open or closed and, in general, it can be

divided into three parts: perfect electric conductors (PEC),

perfect magnetic conductors (PMC), and infinity (INF). The

dielectric material in ~ may be arbitrarily inhomogeneous,

transversely anisotropic, and lossy. We also assume that the

permeability of all dielectric materials is the constant scalar wo

everywhere. The relative permittivity is assumed to be given

by the complex tensor

[1

Czz Czy o
i(z, y) = 7’ –j=” = .EZv ~YY o (1)

o 0 e..

This form of the tensor ~ implies that the waveguide in

Fig. 1 has reflection symmetry about the z-axis; i.e., a mode

propagating in the +Z direction is degenerate with a mode

propagating in the –z direction [21].

A. Elimination of Spurious Solutions

For the dielectric waveguide problem described above, the

magnetic filed vector H is continuous everywhere, while
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Fig. 1. The waveguide cross section.

the electric filed vector E may not be so. It is then more

convenient to define the dielectric waveguide problem in terms

of the magnetic field only. The double-curl equation

(v x 7-1 ).VXH –w2eOpOH=0 (2)

plus the tangential or the normal boundary condition have

been widely adopted for the finite element analysis of the

source-free dielectric waveguide boundary-value problem [2],

[5]–[7]. In an analytical approach, using the above equation

and one of the boundary conditions, the solenoidal character

of the field solution can be guaranteed at every point in

the problem domain. In that case, the tangential and normal

boundary conditions are derivable from each other. This also

implies that the analytical field solutions satisfy automatically

the divergence equations V. B = O and V. D = O, which are

the remaining equations governing the electromagnetic field

but, because of the above, it is not necessary to include them in

the problem definition (2). If the complete solutions satisfy ex-

actly the double-curl definition, it is, of course, unnecessary to

include the divergence conditions. Therefore, using the double-

curl definition (2) is usually sufficient to obtain the correct

fields. Using numerical approximate methods, however, the

situation is different. For a weak approximation as the finite

element solution, the solenoidal character of the field solution

cannot be guaranteed. Hence, the tangential and normal bound-

ary conditions are no longer automatically derivable from

each other, and the divergence conditions cannot be implied

by the double-curl definition. As a consequence, the prob-

lem is underdetermined, and nonphysical, spurious solutions

may appear.

For an H-field approximation, the magnetic field double-

curl equation, the magnetic field divergence condition

V.H=O (3)

and both the associated magnetic field tangential and normal

boundary conditions should be used in the problem in order

to eliminate spurious solutions completely.

B. Basic Differ-ential Equation

For our dielectric waveguide problem, the permittivity ten-

sor is assumed to have the special form (l). In that case, we
can simplify the boundary-value problem definition (2) and (3)

further to include only the two transverse components of the

magnetic field. Denoting =tt as the 2 .X 2 tensor

. [1f+.zEtt= ~xY (4)
~zY ~YY

Expression (1) can be represented as

F = ?tt + Ezziiziiz (5)

The double-curl equation (2) involves all three vector com-

ponents of the magnetic field, while strictly only two are

needed. Incorporating the divergence-free condition (3) into

(2), we can reduce the number of components in the field

equation to the two transverse components of the magnetic

field Hz and Hy only. To achieve this purpose, we next

proceed to separate the transverse and longitudinal components

of (2). Here, the magnetic field is assumed to have a z

dependence as H($, y, z) = H(z, y) exp(–~z), where -y is

the (complex) propagation constant.

Equation (2) can be separated into its transverse and longi-

tudinal parts. The transverse component of (2) becomes

Vt X (E;;Vt X Ht) – “@z

[(
x zt;l . 1Vtx iizHz) – w2&~pOHt

+ 72& x c~~[=-1 . (6. X Ht)] = O (6)

where Vt = iizdz + ii~~y, Ht = &IIm(z, Y) + ~yHy(~,Y).

We can remove Hz in (6) by incorporating the divergence-

free condition (3), from which we have

(7)

Substituting (7) into (6), we reduce (6) to an equation involving

only the transverse magnetic field components Ht, viz.,

Vt X (e;; Vt X Ht) – 62

[

x ~t; 1
.Vt x (ii.Vt . HJ] – LJ2eOjJOHt

[(+ 72az x 5;1 “ 1iizX Ht) = O (8)

The above is an eigenvalue problem with eigenvalue T2. The

dependence on 72 implies that modes with propagation factors

exp (+~z) are degenerate.

C. Local Potential Method

We can express (8) as an operator equation of the form

.CH, = AIH, + AzH, + &Ht + T2BH, = O (9)

It can be easily proved that the operator L in (9) is not

self-adjoint. A variational expression can still be derived for

this problem using the general method proposed by Chen and

Lien [22], but it requires consideration of the adjoint field H:

which in this case, and with the usual definition of the inner

product (($, g) = ~S $ “ g cM), does not correspond to the
transverse magnetic field.

However, it can be observed that in expression (9), Al, A3,

and B are self-adjoint operators; only Az is not self-adjoint.
Based on this fact, we can apply the local potential method

[23] to (9) to obtain a variational formulation involving only

Ht, the transverse components of magnetic field.

Let us define H: as the field at the stationary state, the

solution to the problem, and assume that Ht is a v;alue

infinitesimally displaced from the stationary state. Considering
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now the nonself-adjoint part of the problem, we can suppose

that for such small displacement from the stationary state

/lzH, c /4zH~ (lo)

With this assumption, (9) becomes

L,el~Ht = –A2H~ (11)

where ,&lf = Al + As + ~2f? is a self- adjoint operator. If we

now take –A2H; as a known function of position, (11) is a

self-adjoint problem. We can then apply the standard methods

for self-adjoint operators to (11) obtaining the variational

expression

F(Ht) = (Ht, &fHt) + 2(Ht, A@’)

= (H,, AIHt) + 2( H,, A2H:) + (Ht>A@t)

+ v2(Ht, BHt) (12)

During the next process, we have two types of unknown

functions in the variational formulation. One of these is Ht,

which we are at liberty to manipulate. The second type is H;,

which is a disguised unknown in the sense that this particular

quantity is playing the same role as the stationary solution. In

other words, we must assume that H: is a known function

of position; this dual character must be maintained until the

function is identified as that occurring at the stationary state.

This constraint is to be released after extremization, making

H? = Ht. It is essential to distinguish between the stationary

function H! and the local function H~ until the process of

variation is complete, otherwise incorrect results will arise.

D. Reduction of Continui@ Requirement

Equation (12) is the weak form of the boundary-value

problem, but it is not suitable for ordinary nodal-based first-

order finite elements which are only of Co continuity because

the operators Al and A2 contain second-order derivatives,

requiring finite elements of Cl continuity. However, we can

remove the second-order derivatives by integration by parts.

A fundamental property of finite element approximations is

that they can be formulated completely locally, one element at

a time, independently of the other elements. Global approxi-

mations can then be obtained by simple transformations of

local equations. Based on this property, we only need to pay

attention to a typical element ~, (the closure of open region

S., S. = S.+ C., C. is the boundary of &). We also assume
that the permittivity tensor inside Se is constant. The surface

integral over region S in (12) is simply the sum of the surface

integrals over each element Se:

@=:’(ows (13)
.

where we have assumed a finite element model with N,

elements.

Performing integration by parts in (12), we arrive at a

formulation which involves only first-order derivatives

F(H,) = A + CY2B (14)

where

N. n

A=~j’/zz(‘1 V, X Ht) . (Vt X Ht) dS

~=1 .

N, .

‘l(V, X H,). (H, X n) dl+ ~ jc ‘..
~=1 e

N. .

N. .

-Ej k;Ht .H~ dS

~=1 ‘e

(15)

N.

B=–~/ (Lx HiJ+; l . (iiz X H,)] dS (16)
e=l s,

E. Variational Finite Element Formulation

In (14), the closed element boundaries C. consist of a

number of line sections which may be classified as the

following two types: 1) exterior waveguide wall sections

L?: L: c C. and L: n C = L:; and 2) interior element

interface sections L;: L; c C. and L: n C = 0, where C is

the boundary of the waveguide cross-section.

As a result, the overall contributions of the contour integral

over all Cc in (14) can be rearranged as

where

/4: =
/{

c;~(Vt x H,) . (Ht x n)
L;

A; =
/{

‘l(+)(Vt X Ht) .%t
(

Ht x n(+)
L; )

‘l(–)(vt x Ht) . (Ht x n(–)+ .5Zz
)

{[

=–1(+)
● 2Vt . Hi & X Ett ~ (ii. x H,)]}. n(+)

{[

=–1(–)
-tZv’t“Hi 63 x ctt ~ (iis x H,)] } ~n(-)} dl

(19)

In (17), NP is the total number of element boundary sections

on the waveguide wall, Nq is the total number of interelement
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boundary sections, A$ is the line integral contribution of the

pth wall section, A: is the line integral contribution of the qth

interelement boundary section, the symbol (+) denotes values

on the interface section L; from the element, on one side of

L:, and (–) denotes values on L: from the element on the

other side of L; (as illustrated in Fig. 2).

The Line Integral on the Exterior Wall: For the first term in

(18), we note from the boundary condition that c~lVt x Ht

vanishes on a PEC, and Ht x n vanishes on a PMC. Therefore,

the contribution of (c~l Vt x H~) . (H~ x n) is zero on PEC,

PMC, and for nonradiating modes, at infinity as well.

For the second term in (18), Vt . H: vanishes on a PMC,

‘1 . (ii; x Ht)]} . n will vanish on aand also {& x ~tt

PEC if the dielectric in the element is: i) isotropic (EZV =

O, e~~ = Cvv = e~~); or ii) uniaxial (diagonal) anisotropic
(,., = 0,6.. = t,, # e..); or iii) of arbitrary diagonal

anisotropy (only Czg = O), but with the element edge in the

x or y direction.

Summarizing the above, we arrive at the following expres-

sion for the line integral:

A; = l’{e~:(V, x H,). (H, X n) + 2V,
L;

{[
Hi a% X ?t; 1 ~ (u. X H,)] } . n} dl

[

o,
if L~ is on PMC, PEC*, INF;

= ~Ly 2V, . H~{iiz x [Zt~l ~ (ii, x Ht)] } . ndl,

otherwise
(20)

where *. means in the cases i) –iii) above.

Because the line integrals Af can only be nonzero on’ PEC,

and only when none of the above conditions i)–iii)”is satisfied,

we can write A~ = AI$C, L; = L$ec, ,and reduce jvp to the

number of boundary sections on a PEC satisfying none of the

cases i)–iii) abo~e.

The Line Integral on Interelement Interfaces: Note that in

(19), the interelement interface unit normal vectors n(+) and

mf– ) from both sides of the interface L; are precisely opposite

in direction for any point on L;, namely, n(–) = –n(+).

Additionally, from the field boundary conditions, we have

– 1(–) Vt x Ht. Hence, the first two terms‘l(+)Vt X Ht = 6ZZe~~

in (19) will cancel each other, reducing A; to

. (ii. X Ht)] } . fit+) dl . (21)

––l(+)
The above line integral will not vanish only if Ztt #

=–1(–)
%t .We therefore only need to take into account the line

integral A: on interfaces between different dielectrics.
Summarizing the above discussion, we finally obtain the

finite element variational formulation

rI =A+T2B=0 (22)

Fig. 2. Interelement interface.

where

A= ~J c;;(V, x H,). (V, X H,) dS
~=1 se

N,

+~~s 2vt” [(

——
H?6Z . Vt X Ztt 1. iiz X Ht)- dS

.S=l e

N.

—
X1

k:Ht . Ht dS

e=l se

~(iiz x Ht)] } ~n(+) dl (23)

B =,-~ ~e (ii. X H,). [7,j1 . (tiz X H,)] dS (24)

where N., N;, and N; are the total number of elements,

number of PEC boundary sections, and dielectric interface line

segments, respectively. 6~ is defined as

{

~w = O, in one of the cases i) – iii);
P 1, otherwise.

(25)

F. Finite Element Implementation

Extremizing the variational finite element formulation (22)

and releasing the constraint on H! (making H! = Ht) leads

to a matrix eigensystem of the canonical form

[QI{x}= W1{X} (26)

where the matrices [Q] and [R] are, in general, large and

sparse. The matrices are also nonsymmetric in the presence

of dielectric inhomogeneit y andlor anisotropy. Furthermore,

the matrix elements are complex (and so are the eigenvalues)

in the case of lossy dielectrics. For the lossless case, both

matrices in (26) are real but the eigenvalues and eigenvectors
can still possibly be complex conjugate (as in the case of

complex modes in lossless guides).

At present, there are no standard library routines to solve this

type of problem efficiently [24] – [26]. An efficient solver ba~sed

on the subspace iteration algorithm, and taking full advantage

of the sparsity of the matrices, has been specially developed
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for this

a group

problem [20]. This solver allows us to find one or

of eigenvalues (and the corresponding eigenvectors)

closest to a given value. A preliminary implementation of our

program is based on rectangular finite elements with bilinear

shape functions. This choice of elements and shape functions

is made to improve the accuracy of the line integral terms.

The extension to arbitrary quadrilateral elements, capable of

providing as much flexibility as that obtained with triangles,

is straightforward [27]. Moreover, the use of quadrilateral

elements, which are actually linear isoparametric elements,

makes it easier to extend to (quadratic) isoparametric elements,

which is more suitable to follow arbitrary curves.

III. COMPUTATIONAL RESULTS

In order to demonstrate the effectiveness of the method

described above, we present in this section a series of ex-

amples of inhomogeneous waveguides including isotropic and

anisotropic, lossless and lossy waveguides. All computations

were carried out on a SUN SPARCstation 2.

A. An Optical Buried Isotropic Lossless Waveguide

Fig. 3 shows the dispersion characteristics for the E~n and

E~n modes of an isotropic rectangular dielectric waveguide

of height t and width w buried in a medium with a refractive

index nz of 1.0; the refractive index nl of the guide core is 1.5.

The dispersion curves are drawn in terms of the normalized

index b and normalized frequency v, which are defined by

““w-
(27)

(28)

We compare our solutions to the results of Goell [30],

showing excellent agreement even at low frequency. Goell’s

solution is derived from cylindrical harmonic analysis, and has

often been used as a benchmark for comparison in the literature

[6]. However, a finite element solution is more versatile and

flexible than Goell’s method.

This problem is particularly sensitive to the treatment of

the open boundary, especially at low frequencies. A simple

truncation at a certain distance with artificial conducting walls

enclosing the dielectric core can give some reasonable results
at high frequency, but will fail in the lower frequency range

unless a very large cross section is used in the analysis.

Instead of that rather crude approach, we have used infinite

elements [28], [29], in this example, to extend a fixed finite

element area of dimension (w + w) x (t + w) to infinity.

This gives substantially better results ‘in the lower frequency

range (in this example, for v < 0.5). Taking advantage of

the symmetry, only one-quarter of the cross section has been

considered, dividing that region into 456 rectangular elements.

With different choices for the boundary conditions on the

symmetry walls, all modes of the guide can be found. The

memory requirement is less than 3 MB and the CPU time is

about 35 s for each frequency on the dispersion curve.

1 nz 4Y
— present method

i

v

Fig. 3. Dispersion characteristics of the four lowest modes in an isotropic
rectangular dielectric waveguide.

B. A Dielectric Buried Anisotropic Waveguide

Fig. 4 shows the dispersion characteristics of the four lowest

modes of an anisotropic, lossless dielectric buried waveguide

of rectangular cross section of height t,width w = 2t, core
nz = 2.31, n; = 2.19, and claddingpermittivity n: =

2 – 2.65. Our results agree very well withpermittivity nz –

those obtained by Ohtaka [31]. Ohtaka’s results are obtained

using a variational method and an expansion in terms of

cylindrical-harmonic functions, and have been used frequently

as a standard for comparison. Similarly to the example of the

isotropic rectangular dielectric waveguide in Fig. 3, the use of

infinite elements greatly improves the accuracy of the solution

in the lower frequency range (kot < 3.5), giving better results

than Hayata etal. [6] and Chew and Nasir [8]. The finite

element area and the mesh used in this example are the same

as those used in the previous example.

C. A Lossy Rectangular Waveguide

A rectangular metallic waveguide filled with homogeneous,

isotropic, and lossy dielectric is analyzed next, and the results

are compared to those obtained analytically. The dielectric

has a relative permittivity ~ = 1.5 – jl.5. Fig. 5 shows the

relative error of the finite element solutions for the propagation

constant of the fundamental T’1710 and the next higher order

TEO1 modes in the guide, as a function of the number of mesh

points. Six uniform meshes of first-order square elements, in

geometric progression (4 x 2,8 x 4,16 x 8,32 x 16,64 x 32,

and 128 x 64), are used in the numerical computations. The

statistics of CPU time and memory for this example are shown

in Figs. 7 and 8.

The relative error e is defined by

{

(o – ~)/@, for the attenuation constant; (29)

e= (P - ~)/~, for the phase constant

where (Q, @ and (d, ~) are the finite element and exact

solutions, respectively. The exact solutions are given by

.=a+m=kod~ (30)
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Fig. 4. Dispersion characteristics of the four lowest modes in an anisotropic
rectangular dielectric waveguide.

Fig. 5. Relative error of the finite element solutions for the propagation
constant of the fundamental TE1 o mode and the TEo I mode in a 10SSY
dielectric-loaded metallic rectangular waveguide (inset) as a function of the

number of unknowns.

where m and n are the mode indices for the x and y directions,

respectively.

Fig. 5 shows that the relative error decreases as the number

of unknowns increases. It is also interesting to note that

the directions of convergence are opposite for the real and

imaginary parts of the propagation constant; i.e., e > 0 for a,

whereas e < 0 for /3.

The choice of meshes in geometric progression allows

for the use of the Aitken’s 62 extrapolation method [32].

Extrapolated values taking three successive meshes are shown

in Table I with the relative error in percent shown in brackets.

The high accuracy of the extrapolated results, even using

relatively coarse meshes, is an indication of the quality of

convergence of the method.

D. An Anisotropic and Lossy Image Waveguide

The next example illustrates the case of a lossy anisotropic

waveguide. Dispersion characteristics of the E~l mode in the

slow wave region of an image waveguide are shown in Fig. 6,

taking the real part of Cvy, c~v as a parameter. The results

in Fig. 6 compare very favorable to those obtained by H[ayata

et al. [7], needing less computer resources and showing greater

accuracy than those. Similar advantages are observed in the

calculation of the dispersion characteristics as a function of

the loss parameter [7], [19]. Our results were obtained on

a SUN SPARCstation 2 requiring about 17 s CPU time for

each frequency and less than 2.5 MB of memory to solve the

above problem using a mesh of first order rectangular elements

and 625 nodes. It is interesting to note that the results of

Hayata et al. were obtained using a mesh of only, 81 nodes

but requiring 7.6 MB of memory and 10 s of CPU time in a

Hitachi S-810/10 supercomputer [7].

The resultant matrix problem in this as in all, cases of

inhomogeneous andfor anisotropic dielectrics consists of large

non-Hermitian matrices. The matrix solver mentioned before

allows a very efficient and fast solution as dramatically illus-

trated in Figs. 7 and 8 showing statistics of CPU time and

storage for the lossy waveguide problem described in Fig. 5.

The performance of our sparse matrix solver is here compared

against the complex matrix routine F02GJF from the N,AG

library [25]. The dense-matrix QZ algorithm (on which that

routine is based) is the only one available for this type of

problem in standard computer libraries [25], [26].

The order of the resultant matrices, denoted by Nm, is

twice the number of nodal points in the mesh. After applying

boundary conditions, the number of actual unknown values

reduce to NU, the order of the matrix problem to solve.

Empirical expressions can be fitted to the measured CPU time

t.l and the estimated memory requirements msl as functions

of NU and Nm, respectively.

t.1% 4.3. 10-4N~”5 (seconds) (31)

m~l x 1.85Nm (kilobytes) . (32)

When referring to CPU time, Nu is more representative

than the number of nodes, while in connection to memory

requirements, Nm is more adequate. In our formulation, N~, =

2NP, NU s Nm.

The exact values of the parameters in the fitting will vary

slightly for different problems but these results clearly show

that a sparse-matrix solver of this kind will drastically reduce

CPU time and memory requirements to be proportional to

about Nl”5 and N, respectively, while for a dense-matrix

algorithm they would be proportional to N3 and N2, respec-

tively. The sparse matrix eigenvalue solver enables this method

to solve problems with more than 10 thousand unknowns in

reasonable time on a medium-size workstation.

Computational results of all the examples shown are very

satisfactory. No spurious solutions appear in any of the exam-

ples which cover all categories of dielectric waveguide prob-

lems—lossless isotropic, lossless anisotropic, lossy i50tropic,

and lossy anisotropic dielectric waveguides including both
closed and open structures. Furthermore, the fact that the

resultant matrix problem is non-Hermitian in the case of

inhomogeneous guides (even for the lossless case), far from

being a deficiency of this formulation, shows its comphXe-

ness, in allowing the analysis of complex modes in 10SSIess

guides [20].
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TABLE I
EXTRAPOLATED RESULTS AND THEIR RELATIVE ERRORS

TEIO mode TEOI mode

Meshes a/k (e, 70) U/k (e, %) cY/i (e, 70) /3/k (e, %)

1,2,3 0.59638493 (4.9E-4) 1.2575780 (-4.lE-4) 0.75852665 (3.5E-2) 0.98909351 (-1.4E-3)
2,3,4 0.59638217 (3.4E-5) 1.2575830 (-2.7E-5) 0.75828594 (3.5E-3) 0.98909317 (-1.4E-3)
3,4,5 0.59638198 (3.5E-6) 1.2575832 (-6.lE-6) 0.75826094 (2.3E-4)
4,5,6

0.98910670 (-1. OE-4)
0.59638196 (1.9E-7) 1.2575833 (-2.6E-7) 0.75825924 (1.4E-5)

Exact 0.596381963112
0.98910770 (-8. OE-6)

1.257583304643 0.758259127827 0.989107776585

1.5
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Fig. 6. Dispersion characteristics of the Eyl mode in a shielded image
waveguide with anisotropic lossy dielectric. (a) Normalized phase constant.
(b) Normalized attenuation constant.

IV. CONCLUSIONS

A variational finite element method for the analysis of mi-

crowave and optical waveguide problems with arbitrary cross

section and inhomogeneous, anisotropic, and lossy dielectrics

has been described in detail. With this approach, solutions are

obtained directly for complex propagation constants. Spurious

solutions are totally eliminated by explicitly including the

divergence-free condition for the magnetic field in the formu-

lation. This is achieved by the elimination of the longitudinal

component of the magnetic field, leaving a very efficient

Number of unknowns

CPU time for the lossy waveguide problem shown in Fig. 5 using

the sparse matrix solver on a SUN SPARCstation 2.

60

40

20

--- estimated for the dense solver F02GJF

;— estimated for the present sparse solver

o measured for the present sparse solver

>
4000 8000 1:

Matrix order

00
0

Comparison of memory requirements from the sparse matrix solver
using a subspace of order 1 and its NAG equivalent complex dense-matrix
routine F02GJF.

representation of the problem in terms of the two transverse

components only.

The resultant matrix eigenvalue problem is of canonical

form and, although the matrices are non-Hermitian in the

general case, preventing the use of standard library packages,

an efficient solver has been developed specially for this for-

mulation taking full advantage of the sparsity of the matrices.

This solver allows to find very efficiently one or a group of

eigenvalues (and the corresponding eigenvectors) at a time.

The order of the matrices is at most twice the number of mesh
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nodes and the sparsity depends only on the topology of the

mesh.

This method has been thoroughly tested solving a com-

prehensive range of guiding structures in microwaves and

optics, and examples are given here that include isotropic and

anisotropic, lossless and lossy dielectric waveguides, as well

as both closed and open-boundary structures. The numerical

results compare very well to those obtained by other methods.
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