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An Efficient Finite Element Solution of
Inhomogeneous Anisotropic and
Lossy Dielectric Waveguides

Yilong Lu, Member, IEEE, and F. Anibal Fernandez, Member, IEEE

Abstract— An efficient finite element method is presented for
the full wave analysis of dielectric waveguides. This method
has four major features: 1) the ability to treat a wide range
of dielectric waveguide problems with arbitrarily shaped cross
section, inhomogeneity, transverse-anisotropy, and significant loss
(or gain); 2) total elimination of spurious solutions; 3) direct
solution for the (complex) propagation constant at a specified
frequency; and 4) the use of only two components of the magnetic
field, thus maximizing the numerical efficiency of solution. The
resultant matrix eigenvalue problem is of canonical form and
is solved with an efficient method, specially developed for this
purpose, taking full advantage of the sparsity of the matrices.
Numerical results are shown for a variety of microwave and op-
tical waveguides including anisotropy and losses. These examples
also include closed and open-bounded structures. The computa-
tional results agree very well with analytical and previously pub-
lished results.

1. INTRODUCTION

IELECTRIC waveguides are fundamental components of
Doptoelectronic and microwave devices and, as such, a
full, accurate description of how electromagnetic waves propa-
gate in these structures is essential. The advance of material
science and fabrication technology is continuously introducing
more complicated waveguide structures. Furthermore, many
materials used in dielectric waveguides are anisotropic (such
as LiNbOj3, LiTaOs, and many organic méterials), further com-
plicating the theoretical analysis of the devices. Additionally,
quite often, significant losses need to be taken into account,
for instance, in lossy buffer layers or metal claddings of
optical waveguides (as metal is highly absorbing at optical
frequencies). On the other hand, fabrication costs are still
high, and measuring techniques are difficult, expensive, and
time consuming. There is, therefore, a great demand for more
accurate and flexible computer modeling techniques which can
be used for analysis and design of a wide range of waveguiding
structures.

A single scalar formulation is inadequate for the inher-
ently hybrid mode situation of anisotropic or genuinely two-
dimensional inhomogeneous waveguide problems. To evaluate
rigorously the propagation characteristics of inhomogeneous
anisotropic waveguides, a vectorial wave analysis is necessary,
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with at least two field components. According to the way
the problem is formulated (or to the type of eigenvalue), the
formulations may be classified into two types. One type can be
called frequency formulation (or simply w-formulation), where
the eigenvalue is an explicit known function of w; the other
can be called a propagation constant formulation (or simply
v-formulation), where the eigenvalue is an explicit known
function of «y. One important drawback of an w-formulation
is that, for a given waveguide, it gives the frequency of each
mode corresponding to a selected value of the propagation
constant, while in practice the problem is usually the inverse,
that is, one is interested in finding the propagation constant
(possibly complex) at a specified frequency. Consequently,
iterations are usually needed to solve a practical problem when
using this type of formulation. In contrast, a -y-formulation
solves directly for the propagation constant at a given fre-
quency. Additionally, due to the impracticality of a proper
guess for a complex propagation constant, only y-formulations
are applicable to lossy waveguide problems (or, for the same
reason, to the analysis of complex modes in lossless guides).

The finite element method is one of the most versatile
methods to find accurate and efficient numerical solutions to
a wide range of electromagnetic field problems. However,
perhaps the most serious difficulty in applying a vectorial,
nodal-based finite element method to waveguide problems (or
similar problems requiring a vectorial representation) is the
appearance of spurious solutions [1], [2]. Although the occur-
rence of spurious solutions has been known for some time,
and research on this topic has been extensive in recent years,
the suppression of such undesirable nonphysical solutions is
still a subject of great interest.

An earlier similar formulation based on the transverse
components of the magnetic fields was used by Williams and
Cambrell [3] to analyze surface waves in (open) isotropic
dielectric wavéguides. But as the equations contain terms
proportional to derivatives of the permittivity, it is not really
adequate for finite element solutions of waveguides of arbitrary
permittivity profiles, including abrupt dielectric interfaces [4].

Several methods have been suggested over the last decade
to cure the spurious problem. Apart from the penalty method
[5] which, although not eliminating the spurious solutions,
allows us to shift them away from the region of interest in the
spectrum, other procedures attempt to remove them altogether.
For example, Hayata ef al. [6] suggested an approach in
terms of only the transverse magnetic field components for
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anisotropic lossless waveguide problems. Using the divergence
condition, they managed to reduce the number of components
and eliminate spurious solutions, but at the cost of losing the
sparsity of the matrices (rendering the method useless but for
the smallest problems). The same problem is clear in their
extensions of their method to diagonal anisotropic and lossy
waveguide problems [7]. In their examples, a simple mesh of
153 nodes requires 27 MB memory and about 40 seconds to
obtain one point in the dispersion curve using an Hitachi S-
810/10 supercomputer.

Chew and Nasir [8] proposed a four component variational
~-formulation in terms of the transverse components of both
electric and magnetic fields for transverse anisotropic dielectric
waveguide problems. This formulation can be reduced to
one in terms of only (H,,H,) or (E;, Ey), but only after
assuming that both transverse fields (electric and magnetic)
can be described in terms of the same set of basis functions,
implicitly forcing continuity on the transverse components
of both electric and magnetic fields. This, of course, will
not be correct in the case of abrupt dielectric interfaces.
Additionally, the resultant formulation is highly sensitive to
the type of element used. For instance, square elements cause
the formulation to collapse.

A ~-formulation in terms of all six components of the
electric and magnetic_fields was proposed by Svedin [9].
Enforcing all tangential and normal interface and boundary
conditions, and implicitly forcing the zero divergence con-
dition on both electric and magnetic fields, this formulation
succeeds in eliminating spurious solutions. Although it can
treat the most general anisotropic materials with full permittiv-
ity and permeability tensors, it is extremely inefficient, needing
all six components of the fields (the order of the matrices is
then six times the number of nodes!).

Formulations based -on a combination of vector and scalar
potentials have also been proposed to eliminate spurious
modes [10], [11]. These are w-formulations in terms of four
variables.

A completely different way of avoiding spurious solutions
is the use of edge elements and their generalization, tangen-
tial elements [12], [13]. In this approach, the interpolation
functions themselves are defined as vectors, and the required
continuity conditions of the field components across element
boundaries are automatically satisfied. This provides a neat
and elegant way of solving problems involving vector fields,
although its most clear applications are still in the solution of
authentically three-dimensional problems. Applications have
been made of this method to two-dimesional (waveguide)
problems [14], {15] although this results in a rather awkward
treatment of the three different components of the field vector
where two components are described in terms of edge elements
and the third using nodal based elements. Furthermore, in the
method of Koshiba et al. [15], the sparsity of the matrices is
lost. The method in [14] is a y-formulation which, according
to its authors, leads to real eigenvalues. Since the spectrum
of solutions of (lossless and lossy) waveguides containing
inhomogeneous dielectrics is, in general, complex, this for-
mulation is incomplete. A related approach to edge elements
uses covariant-projection elements [16]. This has been applied
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to solve waveguides using an w-formulation and requiring
mixed order trial functions. No standard spurious solutions
appear but, in common with edge element methods, a cluster
of zero-eigenvalue is found.

Most of the existing finite element formulations for the
dielectric waveguide problem have been restricted to the
lossless case. In particular, all w-formulations are only of
practical interest in such a case. Of the recently proposed
formulations which can eliminate spurious solutions, only
Hayata et al. [7] show explicit applications to lossy waveguide
problems. However, as mentioned before, their formulation
leads to dense matrices, which is a real extravagance in the
use of computer resources.

In this paper, we present in detail an efficient, vectorial,
variational finite element approach for the analysis of in-
homogeneous, anisotropic, and lossy dielectric waveguides
[17]-[19]. It can treat a wide range of dielectric waveguide
problems with arbitrary cross section and inhomogeneous,
transversely anisotropic and complex permittivity tensor. This
formulation gives solutions directly for the (complex) propa-
gation constant at a specified frequency and totally eliminates
spurious solutions. Numerically efficiency is maximized since
it only uses the two transverse components of the magnetic
field. The resultant matrix eigenvalue problem is of canoni-
cal form and involves sparse, nonsymmetric (or in general,
complex non-Hermitian) matrices. An efficient solver {20] has
been specially developed for this problem, and allows us to
treat large problems on relatively small computers. Examples
are given of several types of waveguides in microwaves
and optics, including open and closed boundaries, anisotropy,
and loss.

II. VARIATIONAL APPROACH

Consider a dielectric waveguide, uniform in the z-direction
and of arbitrary cross section S in the z—y plane as depicted
in Fig. 1. The region S consists of linear dielectric materials
and electric conductors. We assume that C, the boundary
of S, may be open or closed and, in gemeral, it can be
divided into three parts: perfect electric conductors (PEC),
perfect magnetic conductors (PMC), and infinity (INF). The
dielectric material in S may be arbitrarily inhomogeneous,
transversely anisotropic, and lossy. We also assume that the
permeability of all dielectric materials is the constant scalar ug
everywhere. The relative permittivity is assumed to be given
by the complex tensor

- =/ = 6mm emy O
Ez,y) =€ —jJE = |e€gy €4y O @
0 0 €y,

This form of the tensor € implies that the waveguide in
Fig. 1 has reflection symmetry about the z-axis; i.e., a mode
propagating in the +z direction is degenerate with a mode
propagating in the —z direction [21].

A. Elimination of Spurious Solutions

For the dielectric waveguide problem described above, the
magnetic filed vector H is continuous everywhere, while
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Fig. 1. The waveguide cross section.

the electric filed vector £ may not be so. It is then more
convenient to define the dielectric waveguide problem in terms
of the magnetic field only. The double-curl equation

V x (%‘1 Y x H) —wleouoH =0 )

plus the tangential or the normal boundary condition have
been widely adopted for the finite element analysis of the
source-free dielectric waveguide boundary-value problem [2],
[5]-[7]- In an analytical approach, using the above equation
and one of the boundary conditions, the solenoidal character
of the field solution can be guaranteed at every -point in
the problem domain. In that case, the tangential and normal
boundary conditions are derivable from each other. This also
implies that the analytical field solutions satisfy automatically
the divergence equations V- B = 0 and V- D = 0, which are
the remaining equations governing the electromagnetic field
but, because of the above, it is not necessary to include them in
the problem definition (2). If the complete solutions satisfy ex-
actly the double-curl definition, it is, of course, unnecessary to
include the divergence conditions. Therefore, using the double-
curl definition (2) is usually sufficient to obtain the correct
fields. Using numerical approximate methods, however, the
situation is different. For a weak approximation as the finite
element solution, the solenoidal character of the field solution
cannot be guaranteed. Hence, the tangential and normal bound-
ary conditions are no longer automatically derivable from
each other, and the divergence conditions cannot be implied
by the double-curl definition. As a consequence, the prob-
lem is underdetermined, and nonphysical, spurious solutions
may appear.

For an H-field approximation, the magnetic field double-
curl equation, the magnetic field divergence condition

V-H=0 ' 3)
and both the associated magnetic field tangential and normal

boundary conditions should be used in the problem in order
to eliminate spurious solutions completely.

B. Basic Differential Equation

For our dielectric waveguide problem, the permittivity ten-
sor is assumed to have the special form (1). In that case, we
can simplify the boundary-value problem definition (2) and (3)
further to include only the two transverse components of the
magnetic field. Denoting &, as the 2 x 2 tensor

ol @
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Expression (1) can be represented as -
% = gtt -+ Ezé&z&z (5)

The double-cutl equation (2) involves all three vector com-
ponents of the magnetic field, while strictly only two are
needed. Incorporating the divergence-free condition (3) into
(2), we can reduce the number of components in the field
equation to the two transverse components of the magnetic -
field H, and H, only. To achieve this purpose, we next
proceed to separate the transverse and longitudinal components
of (2). Here, the magnetic field is assumed to have a z
dependence as H(z,y,z) = H(z,y)exp(—~yz), where ~ is
the (complex) propagation constant.

Equation (2) can be separated into its transverse and longi-
tudinal parts. The transverse component of (2) becomes

Vt X (G;zlvt X Ht) - ’Y&z
X [?;1 (Vs x’&sz)] — weguoH,y
+ 7%, x [E;" - (a: x HY)|=0 (6)

where Vi = 4,0, + 6,0y, Hy = G4 Hy(z,y) + ayHy(z,y).

We can remove H, in (6) by incorporating the divergence-
free condition (3), from which we have

V. H;
H,=-t""* )
y «

Substituting (7) into (6), we reduce (6) to an equation involving
only the transverse magnetic field components H, viz.,

Vt X (6—1vt X Ht) — (Alz
I:Ett Vt X (ant Ht)] — wZEO/L()Ht
+ 9% x & (6. x H)|=0  (8)

The above is an eigenvalue problem with eigenvalue 2. The
dependence on +y? implies that modes with propagation factors
exp (£vz) are degenerate.

C. Local Potential Method

We can express (8) as an operator equation of the form
LH,= AH,+ AH,; + A;H,; +’723Ht =0 .9

It can be easily proved that the operator £ in (9) is not
self-adjoint. A variational expression can still be derived for
this problem using the general method proposed by Chen and
Lien [22], but it requires consideration of the adjoint field H
which in thlS case and with the usual definition of the inner
product ({ = [sf - gdS), does not correspond to the
transverse magnetlc field.

Howeyver, it can be observed that in expression (9), A1, As,
and B are self-adjoint operators; only .A; is not self-adjoint.
Based on this fact, we can apply the local potential method
[23] to (9) to obtain a variational formulation involving only
H,, the transverse components of magnetic field.

Let us define H? as the field at the stationary state, the
solution to the problem, and assume that H, is a value
infinitesimally displaced from the stationary state. Considering
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now the nonself-adjoint part of the problem, we can suppose
that for such small displacement from the stationary state

AsHy ~ Ay HY (10)
With this assumption, (9) becomes
Lot Hy = — Ay HY (11)

where Lgi¢ = A1 + Az +v2B is a self-adjoint operator. If we
now take —Ap HY as a known function of position, (11) is a
self-adjoint problem. We can then apply the standard methods
for self-adjoint operators to (11) obtaining the variational
expression

F(Ht) = <Ht7£seIth> + 2<Htu>A2H?>
= (H;, ALH ) + 2(Hy, AcHY) + (Hy, AsHy)
v} (H:,BH;) (12)

During the next process, we have two types of unknown
functions in the variational formulation. One of these is H,
which we are at liberty to manipulate. The second type is H 9
which is a disguised unknown in the sense that this particular
quantity is playing the same role as the statlonary solution. In
other words, we must assume that H¢ . is a known function
of position; this dual character must be maintained until the
function is identified as that occurring at the stationary state.
This constraint is to be released after extremization, making
H 2 = H,. 1t is essential to distinguish between the stationary
function H (t] and the local function H; until the process of
variation is complete, otherwise incorrect results will arise.

D. Reduction of Continuity Requirement

Equation (12) is the weak form of the boundary-value
problem, but it is not suitable for ordinary nodal-based first-
order finite elements which are only of C'° continuity because
the operators .A; and .4; contain second-order derivatives,
requiring finite elements of C'! continuity. However, we can
remove the second-order derivatives by integration by parts.
A fundamental property of finite element approximations is
that they can be formulated completely locally, one element at
a time, independently of the other elements. Global approxi-
mations can then be obtained by simple transformations of
local equations. Based on this property, we only need to pay
attention to a typical element S, (the closure of open region
Se, 8. = 8.+ C., C. is the boundary of S.). We also assume
that the permittivity tensor inside S¢ is constant. The surface
integral over region S in (12) is simply the sum of the surface
integrals over each element S,:

[é(.)dS:j;[%E(o)dS

where we have assumed a finite element model with N,
elements.

Performing integration by parts in (12), we arrive at a
formulation which involves only first-order derivatives

(13)

F(H,)=A+~+’B (14)
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where

A= i/ &V, x Hy) - (Vy x Hy)dS
+Z?{
+;/S 2V, - H%,, - {vt x [%;1 (as X Ht)]}dS
+j§fc 2Vt-H?{dz X [%;1 (5 x Ht)]} ndl
—ifsekgﬂt-ﬂtds

Vt X Ht) (Ht X ’n) dl

(15)

Ne
_Z/ (a6, x Hy)- [a;l (@ % Ht)] ds (16)
e= Se

E. Variational Finite Element Formulation

In (14), the closed element boundaries C. consist of a
number of line sections which may be classified as the
following two types: 1) exterior waveguide wall sections
LY:L¥ C C. and LY N C = LY; and 2) interior element
interface sections Li: L} C C, and L. N C = @, where C is
the boundary of the waveguide cross-section.

As a result, the overall contributions of the contour integral
over all C, in (14) can be rearranged as

WAE

NV, x Hy) - (H; xn) + 2V,
-Hg’{az X [%;1 (@ x Ht)}} n} dl
=§: +ZA’ (17

where
AV = / [}(Vex H) - (H, x )
5
+ 2V, H?{az x [%;1 (s x Ht)]} n} di
(18)
/ { ~1(+) Vt X Ht) . (Ht X 'I"L(+))
+ Ezzl( )(Vt X Ht) . (Ht X TL(_))
+2V, - H?{&z X [%‘Wr) (&, x Ht)]} )
+2V, - H?{az X [?;1( ) (a5 x Ht)]} .n(—>} di
(19)
In (17), N, is the total number of element boundary sections

on the wavegulde wall, N, is the total number of interelement
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boundary sections, A;’ is the line integral contribution of the
pth wall section, A7, is the line integral contribution of the gth
interelement boundary section, the symbol (+) denotes values
on the interface section Lj from the element on one side of
Ly, and (—) denotes values on L} from the element on the
other side of L; (as illustrated in Fig. 2).

The Line Integral on the Exterior Wall: For the first term in
(18), we note from the boundary condition that ¢;;'V, x H,
vanishes on a PEC, and H; X nn vanishes on a PMC. Therefore,
the contribution of (e;;'V; x H;) - (H, X n) is zero on PEC,
PMC, and for nonradiating modes, at infinity as well.

For the second term in (18), V; - H? vanishes on a PMC,
and also {a, x [?,;1 - (4, x Hy)]} - n will vanish on a
PEC if the dielectric in the element is: i) isotropic (€zy =
0,€z0 = €yy = €,,); or ii) uniaxial (diagonal) anisotropic
(€xy = 0,640 = €yy # €,); or iii) of arbitrary diagonal
anisotropy (only €, = 0), but with the element edge in the
z or y direction.

Summarizing the above, we arrive at the following expres-
sion for the line integral:

i= |
L

. Hf{dz X [Et
0,
if L is on PMC, PEC”, INF;

Jrp 29 B x [E" - (4 x HY)| } o,
otherwise

{62_21(Vt X Ht) . (Ht X 'n) + 2Vt

w
4

1-(dszt)]}-n}dl

(20)

where * means in the cases i)—iii) above.

Because the line integrals A7’ can only be nonzero on PEC,
and only when none of the above conditions i)—iii) is satisfied,
we can write A} = AP¢, L7 = LP¢, .and reduce N, to the
number of boundary sections on a PEC satisfying none of the
cases i)—iii) above.

The Line Integral on Interelement Interfaces: Note that in
(19), the interelement interface unit normal vectors n{t) and
n(~) from both sides of the interface Ly, are precisely opposite
in direction for any point on L}, namely, n(=) = —pH),
Additionally, from the field boundary conditions, we have
ez_zl(+)Vt xH; = ez_zl(_)Vt x H ;. Hence, the first two terms
in (19) will cancel each other, reducing Afl to

Ai,:/L 2Vt.H?{az x[(g;lw)_?;l(—))

(&, x Ht)]} aMdl. (@)

(3
q

The above line integral will not vanish only if %;MH #
?tzl‘(_). We therefore only need to take inio account the line
integral Afl on interfaces between different dielectrics.

Summarizing the above discussion, we finally obtain the
finite element variational formulation

[[=4++B=0 (22)
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Interelement interface.

Fig. 2.

N,
S [ Vi x HY (Vi x HdS
e= Se
1Ne .
+Z/ 2V, Hi. -V x 57" (4. x Hy)| dS
ZiJs. ]
Nel
—Z/ K2H, H.dS
e=1Y5
Ny,
+) 6y / 2V,
= e
cHYa. %[5 (a. x Hy)| } -mat
Ny
+ ;/L 2V, - H?{dz x [(?;1(*) —%t;“‘))

(@, x Ht)]} -ndl (23)

N,
B=-— Zl [S (4, x Hy,) - [%;1 (4 x Ht)] s (24)

where NE,N;, and N; are the total number of elements,
number of PEC boundary sections, and dielectric interface line
segments, respectively. 6, is defined as

w 07
i ={7

F. Finite Element Implementation

in one of the cases i) — iii);

otherwise. (25)

Extremizing the variational finite element formulation (22)
and releasing the constraint on H (making H = H) leads
to a matrix eigensystem of the canonical form

[@{=} = A[R]{z}

where the matrices [Q] and [R] are, in general, large and
sparse. The matrices are also nonsymmetric in the presence
of dielectric inhomogeneity and/or anisotropy. Furthermore,
the matrix elements are complex (and so are the eigenvalues)
in the case of lossy dielectrics. For the lossless case, both
matrices in (26) are real but the eigenvalues and eigenvectors
can still possibly be complex conjugate (as in the case of
complex modes in lossless guides).

At present, there are no standard library routines to solve this
type of problem efficiently [24]—[26]. An efficient solver based
on the subspace iteration algorithm, and taking full advantage
of the sparsity of the matrices, has been specially developed

(26)
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for this problem [20j. This solver allows us to find one or
a group of cigenvalues (and the corresponding eigenvectors)
closest to a given value. A preliminary implementation of our
program is based on rectangular finite elements with bilinear
shape functions. This choice of elements and shape functions
is made to improve the accuracy of the line integral terms.
The extension to arbitrary quadrilateral elements, capable of
providing as much flexibility as that obtained with triangles,
is straightforward [27]. Moreover, the use of quadrilateral
elements, which are actually linear isoparametric elements,
makes it easier to extend to (quadratic) isoparametric elements,
which is more suitable to follow arbitrary curves.

III. COMPUTATIONAL RESULTS

In order to demonstrate the effectiveness of the method
described above, we present in this section a series of ex-
amples of inhomogeneous waveguides including isotropic and
anisotropic, lossless and lossy waveguides. All computations
were carried out on a SUN SPARCstation 2.

A. An Optical Buried Isotropic Lossless Waveguide

Fig. 3 shows the dispersion characteristics for the EZ . and
EY,,, modes of an isotropic rectangular dielectric waveguide
of height ¢ and width w buried in a medium with a refractive
index ng of 1.0; the refractive index n; of the guide core is 1.5.
The dispersion curves are drawn in terms of the normalized

index b and normalized frequency v, which are defined by

b= (ﬁ/ko)z - n%

27

nl -1 @)
kot

v="1/n2—nZ. (28)

™

We compare our. solutions to the results of Goell [30],
showing excellent agreement even at low frequency. Goell’s
solution is derived from cylindrical harmonic analysis, and has
often been used as a benchmark for comparison in the literature
[6]. However, a finite element solution is more versatile and
flexible than Goell’s method.

This problem is particularly sensitive to the treatment of
the open boundary, especially at low frequencies. A simple
truncation at a certain distance with artificial conducting walls
enclosing the dielectric core can give some reasonable results
at high frequency, but will fail in the lower frequency range
unless a very large cross section is used in the analysis.
Instead of that rather crude approach, we have used infinite
elements [28], [29], in this example, to extend a fixed finite

element area of dimension (w + w) X (¢ + w) to infinity. -

This gives substantially better results in the lower frequency
range (in this example, for » < 0.5). Taking advantage of
the symmetry, only one-quarter of the cross section has been
considered, dividing that region into 456 rectangular elements.
With different choices for the boundary conditions on the
symmetry walls, all modes of the guide can be found. The

memory requirement is less than 3 MB and the CPU time is

about 35 s for each frequency on the dispersion curve.
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Fig. 3. Dispersion characteristics of the four lowest modes in an isotropic
rectangular dielectric waveguide.

B. A Dielectric Buried Anisotropic Waveguide

Fig. 4 shows the dispersion characteristics of the four lowest
modes of an anisotropic, lossless dielectric buried waveguide
of rectangular cross section of height ¢, width w = 2¢, core
permittivity n> = n? = 2.31,n2 = 2.19, and cladding
permittivity n2 = 2.05. Our results agree very well with
those obtained by Ohtaka [31]. Ohtaka’s results are obtained
using a variational method and an expansion in terms of
cylindrical-harmonic functions, and have been used frequently
as a standard for comparison. Similarly to the example of the
isotropic rectangular dielectric waveguide in Fig. 3, the use of
infinite elements greatly improves the accuracy of the solution
in the lower frequency range (kot < 3.5), giving better results
than Hayata er al. [6] and Chew and Nasir [8]. The finite
element arca and the mesh used in this example are the same
as those used in the previous example.

C. A Lossy Rectangular Waveguide

A rectangular metallic waveguide filled with homogeneous,
isotropic, and lossy dielectric is analyzed next, and the results
are compared to those obtained analytically. The dielectric
has a relative permittivity e = 1.5 — j1.5. Fig. 5 shows the
relative error of the finite element solutions for the propagation
constant of the fundamental T F( and the next higher order
T Ey; modes in the guide, as a function of the number of mesh
points. Six uniform meshes of first-order square elements, in
geometric progression (4 x 2,8 x 4,16 x 8,32 x 16,64 x 32,
and 128 x 64), are used in.the numerical computations. The
statistics of CPU time and memory for this example are shown
in Figs. 7 and 8. )

The relative error e is defined by

(29)

_Jla—a)/a, forthe attenuation constant;
€ (8—B)/B, for the phase constant

where (o, ) and (@,) are the finite clement and exact
solutions, respectively. The exact solutions are given by

2 2
- i3 = mr DR _era e
y=a+js ko\/<k0a) +(k0b) € + je'' (30)
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Fig. 4. Dispersion characteristics of the four lowest modes in an anisotropic
rectangular dielectric waveguide.
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Fig. 5. Relative error of the finite element solutions for the propagation
constant of the fundamental T E{o mode and the T'Ey1 mode in a lossy
dielectric-loaded metallic rectangular waveguide (inset) as a function of the
number of unknowns. ' A

where m and n are the mode indices for the 2 and y directions,
respectively. ‘ ‘

Fig. 5 shows that the relative error decreases as the number
of unknowns increases. It is also interesting to note that
the directions of convergence are opposite for the real and
imaginary parts of the propagation constant; i.e., e > 0 for o,
whereas e < 0 for 3.

The choice of meshes in geometric progression allows
for the use of the Aitken’s §2 extrapolation method [32].
Extrapolated values taking three successive meshes are shown
in Table I with the relative error in percent shown in brackets.
The high accuracy of ‘the extrapolated results, even using
relatively coarse meshes, is an indication of the quality of
convergence of the method.

D. An Anisotropic and Lossy Image Waveguide

The next example illustrates the case of a lossy anisotropic
waveguide. Dispersion characteristics of the EY; mode in the
slow wave region of an image waveguide are shown in Fig. 6,
taking the real part of €,,¢,, as a parameter. The results
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in Fig. 6 compare very favorable to those obtained by Hayata
et al. [7], needing less computer resources and showing greater
accuracy than those. Similar advantages are observed in. the
calculation of the dispersion. characteristics as a function of

" the loss parameter [7], [19}. Our results were obtained on

a SUN SPARCstation 2 requiring about 17 s CPU time for
each frequency and less than 2.5 MB of memory to solve the
above problem using a mesh of first order rectangular elements
and 625 nodes. It is interesting to note that the results of
Hayata et al. were obtained using a- mesh of ‘only 81 nodes
but requiring 7.6. MB of memory and 10 s of CPU time in a
Hitachi S-810/10 supercomputer [7].

The resultant matrix problem in this as in all cases of
inhomogencous and/or anisotropic dielectrics consists of large
non-Hermitian mattrices. The matrix solver mentioned before
allows a very efficient and fast solution as dramatically illus-
trated in Figs. 7 and 8 showing statistics of CPU time and
storage for the lossy waveguide problem described in Fig. 5.

- The performance of our sparse matiix solver is here compared

against the complex matrix routine FO2GJF from the NAG
library [25]. The dense-matrix QZ algorithm. (on which that
routine is based) is the only one available for this type of
problem in standard computer libraries [25], [26].

The order of the resultant matrices, denoted by Ny, is
twice the number of nodal points in the mesh. After applying
boundary conditions, the number of actual unknown values
reduce to N,, the order of the matrix problem to solve.
Empirical expressions carn be fitted to the measured CPU time
ts1 and the estimated memory requirements m,; as functions
of N, and N,,, respectively. ‘

te1 ~ 4.3-107*NL® (seconds)
ms1 ~ 1.85N,, (kilobytes).

(1)
(32)

When referring to CPU time, N, is more representative
than the number of nodes, while in connection to memory
requirements, N,,, is more adequate. In our formulation, V,,, =
2Ny, Ny £ Np. ‘

‘The exact values of the parameters in the fitting will vary
slightly for different problems but these results clearly show
that a sparse-matrix solver of this kind will drastically reduce
CPU time and memory requirements to be proportional to
about N> and N, respectively, while for a dense-matrix"
algorithm they would be proportional to N3 and N2, respec-
tively. The sparse matrix eigenvalue solver enables this method

- to solve problems with more than 10 thousand unknowns in

reasonable time on a medium-size workstation.
Computational results of all the examples shown are very
satisfactory. No spurious solutions appear in any of the exam-
ples which cover all categories of dielectric waveguide prob-
lems—lossless isotropic, lossless anisotropic, lossy isotropic,
and lossy anisotropic dielectric waveguides including both
closed and open structures. Furthermore, the fact that the
resultant matrix problem is non-Hermitian in the case of
inhomogeneous guides (even for the lossless case), far from
being a deficiency of this formulation, shows its complete-

‘ness, in allowing the analysis of complex modes in lossless

guides [20].
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TABLE 1
EXTRAPOLATED RESULTS AND THEIR RELATIVE ERRORS
T E19 mode T Eo1 mode
Meshes alk (e, %) B/k (e, %) ok (e, %) B/k (e, %)
1,2,3 0.59638493 (4.9E-4) 1.2575780 (-4.1E-4) 0.75852665 (3.5E-2) 0.98909351 (-1.4E-3)
2,3,4 0.59638217 (3.4E-5) 1.2575830 (-2.7E-5) 0.75828594 (3.5E-3) 0.98909317 (-1.4E-3)
3,4,5 0.59638198 (3.5E-6) 1.2575832 (-6.1E-6) 0.75826094 (2.3E-4) 0.98910670 (-1.0E-4)
4,5,6 0.59638196 (1.9E-7) 1.2575833 (-2.6E-7) 0.75825924 (1.4E-5) 0.98910770 (-8.0E-6)
Exact 0.596381963112 1.257583304643 0.758259127827 0.989107776585
1.5 600
| Exx =€ =15-j15
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L4} Eyy =%y -ils 1 -§ I
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(@ Fig. 7. CPU time for the lossy waveguide problem shown in Fig. 5 using
the sparse matrix solver on a SUN SPARCstation 2.
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Fig. 6. Dispersion characteristics of the E}; mode in a shielded image
waveguide with anisotropic lossy dielectric. (a) Normalized phase constant.
(b) Normalizod attenuation constant.

IV. CONCLUSIONS

A variational finite element method for the analysis of mi-
crowave and optical waveguide problems with arbitrary cross
section and inhomogeneous, anisotropic, and lossy dielectrics
has been described in detail. With this approach, solutions are
obtained directly for complex propagation constants. Spurious
solutions are totally eliminated by explicitly including the
divergence-free condition for the magnetic field in the formu-
lation. This is achieved by the elimination of the longitudinal
component of the magnetic field, leaving a very efficient

8000 12000

0 4000
Matrix order

Fig. 8. Comparison of memory requirements from the sparse matrix solver
using a subspace of order 1 and its NAG equivalent complex dense-matrix
routine FO2GJF.

representation of the problem in terms of the two transverse
components only.

The resultant matrix eigenvalue problem is of canonical
form and, although the matrices are non-Hermitian in the
general case, preventing the use of standard library packages,
an efficient solver has been developed specially for this for-
mulation taking full advantage of the sparsity of the matrices.
This solver allows to find very efficiently one or a group of
eigenvalues (and the corresponding eigenvectors) at a time.
The order of the matrices is at most twice the number of mesh
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nodes and the sparsity depends only on'the topology of the
mesh.

This method has been thoroughly tested solving a com-
prehensive range of guiding structures in microwaves and
optics, and examples are given here that include isotropic and
anisotropic, lossless and lossy dielectric waveguides, as well
as both closed and open-boundary structures. The numerical
results compare very well to those obtained by other methods.
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